
FIELA: A Fast Image Encryption with Lorenz
Attractor using Hybrid Computing

P Kranthi Kumar∗, B V Nagendra Prasad∗, Gelli MBSS Kumar, V. Chandrasekaran, P.K.Baruah
Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam,India.

{kranthipls, nagendraprasad.bv, suneel.gmbs}@gmail.com,{vchandrasekaran,pkbaruah}@sssihl.edu.in

Abstract—In the past few years, the transmission of
digital images across the world has increased. Images such
as military images, personal photos are transmitted which
are not intended for all. It is essential to secure these
images from unauthorized access and modifications. Chaos
theory is a scientific discipline that deals with non-linear
dynamical systems that are effectively impossible to predict
or control. Lorenz attractor is one such chaotic dissipative
flow used for image encryption through the generation of
confusion matrix. In the encryption method used, image
is considered as a cube. To generate the confusion matrix,
Lorenz attractor is applied on every coordinate of the cube
[1]. We have proposed a fast encryption scheme called
FIELA, in which novel improvements to the bin creation
and sorting scheme have been implemented to harness
the power of parallel computing resources like GPUs and
multi-cores.

Index Terms—Lorenz Attractor, Confusion Matrix,
GPU, SpeedUp.

I. INTRODUCTION

Digital images such as personal photos, military im-
ages which are not supposed to be exposed to others
are transmitted across the world. Using encryption algo-
rithms, these images need to be transmitted securely.

The special features of images like redundancy of
data, strong correlation among adjacent pixels, less
sensitive compared to text data makes it difficult to
apply simple encryption algorithms. For real time image
encryption, the algorithms which take lesser time without
compromising on security are preferred. An encryption
algorithm with higher degree of security features is of
no practical use if it is slow.

In case of images, cryptography needs unique re-
quirements like confusion, diffusion and dependence on
secret keys. To meet these requirements, chaos theory
can be used. Given the parameters, chaotic systems
are seemingly random but they are predictable and
reproducible with strong mathematical formulation. The

∗student author

required properties of cryptography are readily satisfied
by chaotic systems. One such chaotic flow is Lorenz
attractor which is an autonomous dissipative flow. Lorenz
attractor [2] is governed by the equations

dx

dt
= σ(y − x); dy

dt
= rx− xz − y; dz

dt
= xy − bz (1)

where x, y, z, t are variables which take real values,
and parameters σ, r, b are positive real constants. σ is
called the Prandtl number, and b is called the Rayleigh
Number. The dynamical orbit of Lorenz attractor will be
chaotic for σ = 10.0 and b = 8/3 and r >24.74[2].

The Lorenz equations cannot be solved analytically
by integration. Instead, a numerical approximation tech-
nique must be used. So, Runge-Kutta method of 4th
order is employed. This Lorenz attractor is applied
multiple times in the encryption process. It makes the
whole process compute intensive. Fortunately GPUs
which have many compute cores can be used for this
process to make this computation faster.

The paper is organized as follows. Section II illustrates
the encryption method used. Section III contains the
parallelized version of the algorithm. Section IV presents
the experimental setup and Section V contains the results
and analysis of the algorithm.

II. ENCRYPTION METHOD USED

The overview of the algorithm used has been provided
in the form a Figure 1. In this method, the given input 2D
image is represented as a cube which is composed of bits
arranged in three dimensional space [3]. At each pixel
location, the Z-axis consists of 8 bit binary representation
of the intensity value at that pixel location.

This way of looking at the image leads to the definition
of a coordinate. A coordinate can be defined as a position
of an intensity bit in the 3D structure of the image. So,
for an image of size 512x512, the 3D view gives 512 x
512 x 8 coordinates. Encryption can be achieved by the



Fig. 1: Flow Chart of the Encryption Method

permutation of the bits and permutation in turn can be
achieved using Lorenz attractor.

The ordinary differential equations of Lorenz attractor
Equation 1 are solved using Runge-Kutta method of 4th
order. This method poses computational problems for
higher coordinate values. So, these coordinates were nor-
malized for computational purposes. Then Lorenz attrac-
tor is applied on each of the normalized coordinates. The
secret key determines the number of iterations the Lorenz
attractor should be applied on each coordinate. These
coordinates after the application of Lorenz attractor are
called chaotic coordinates (LNormC)i.

A bin is defined by its minimum and maximum in
(x,y,z) coordinate range. According to the (LNormC)i
coordinates, the coordinates of the cube are pushed
into bins. These bins were later sorted lexicographi-
cally. Eventually, the coordinates of the cube were also
sorted accordingly. These coordinates form the confusion
matrix. Using this confusion matrix, the values at the
coordinates of the original image were permuted at the
bit level. The confusion matrix is applied on the image
multiple times based on the key.

Fig. 2: Filling the Bins

So, the confusion matrix can be generated independent
of the intensity values of the image. The only parameters
required for the generation of confusion matrix are image
size and the secret key. For the decryption process, the

confusion matrix can be generated and applied on the
encrypted image. This gives back the original image.

FIELA A New approach in the Application of
Lorenz Attractor: The sequential code of the original
algorithm[1] was profiled using GPROF. We observed
that the Create and Fill bins step was consuming 54.89
% of the total time. This part of the algorithm is not
suitable for parallel environment because bins should be
filled sequentially. It might happen that two coordinates
A,B enter the same bin. The order in which A,B enter the
bin decides the final ordering of coordinates in confusion
matrix. If this is done in parallel, there might be a
possibility that A,B enter the same bin in a different
order each time. In which case, the confusion matrix
generated by parallel algorithm need not be same always.
So, if the same confusion matrix is not generated, the
decrypted image will not be the same as original image.

So, we modified the way bins are created so that
each bin contains at most one coordinate without com-
promising on the accuracy of the original algorithm
[1]. This modification not only makes the application
parallelizable but also reduces the time taken on a single
core. This new modified approach is termed as FIELA: A
fast image encryption using Lorenz Attractor. The Create
and Fill bins in the FIELA takes negligible amount of
time.

III. EFFICIENT PARALLEL ALGORITHM FOR FIELA

The computation of Lorenz attractor on the coordi-
nates of the FIELA code took 76% of the total time. We
observed from the code that Lorenz attractor is applied
on each coordinate independently. Since there is no de-
pendency, the Lorenz attractor can be applied in parallel
on each coordinate. The next part of the algorithm which
takes more time is the encryption process. It takes 9%
of the total time. This encryption is an iterative process
in which each iteration depends on the previous one. So,
GPUs are not suitable for this part. Within each iteration,
the operations are independent. So, loop level parallelism
can be exploited using multi cores. Hence, the algorithm
is divided into two parts. The first part is the application
of the Lorenz attractor on coordinates which can be done
on GPUs and the second is the encryption process on
multi cores. This way the power of hybrid computing is
utilized.

The observation mentioned in the above paragraph
led to the implementation of highly compute intensive
Lorenz attractor on GPUs. The work among the GPU
threads is divided as follows.



• For each thread, only one coordinate is assigned.
So, the number of threads created depends on the
image size.

• Each thread normalizes the coordinate and applies
Lorenz attractor on it. At the end of the computation
of the thread, chaotic coordinates are obtained.

Creation of bins can be done in parallel. Each thread
creates a bin and assigns the coordinate belonging to
that thread to the bin. This bin is mapped to the integer
value of the chaotic coordinates. Once all the bins are
created, the next step is to sort the bins. In order to
sort the bins, CUDA THRUST library is used. THRUST
provides a high-level interface for GPU programming
with functionalities like sort, scan, transform, and reduc-
tion operations [4]. The sorted bins gives the confusion
matrix which is used in the encryption process.

IV. EXPERIMENTAL SETUP

The experimental platform is the NCSA Forge super-
computer at University of Illinois. It contains NVIDIA
Fermi M2070 Accelerator Units. There are 448 CUDA
Cores with 1.03 teraflops single-precision performance
and 515 gigaflops double-precision performance.

Operations on the image were performed on OpenCV
platform. The C++ code was compiled using gcc com-
piler with O3 option which performs optimizations
like loop unrolling, SIMD, dead code elimination etc.
GPROF was used for profiling the sequential code.
The CUDA code was compiled using nvcc compiler
with compute capability 2.0. To know the number of
registers used by each thread, an option ptxas-options=-
v was used. To utilize the debugging mode in GPU, the
CUDA code was compiled using options -G -g. OpenMP
was used for the implementation on multi cores. The
OpenMP code was executed on 16 cores. RDTSC timers
were used for timing all the non-GPU codes. CUDA
events are used for timing the CUDA code. Warming up
time for the GPU was not considered.

V. RESULTS AND ANALYSIS

A. Quality Test

The 512x512 Lena image was chosen for the quality
test. The results of modified algorithm are shown in
Figure 3.

The quality of results are discussed below. In the orig-
inal algorithm statistical analysis was used to analyze the
security of the encrypted image. The different types of
analysis that were looked into are 1) Histogram Analysis
2) Information Entropy 3) Correlation of adjacent pixels
4) Key space Analysis. So, the statistical analysis was

Original Lena Encrypted Lena Decrypted Lena

Fig. 3: Encryption and Decryption using the FIELA (Key
used is 01234567890123456789)

performed to the modified algorithm as it was done for
original algorithm. The results of FIELA are similar with
the original algorithm. This tells us that our FIELA does
not compromise on the accuracy of results.

1) Histogram Analysis: This test is used to illustrate
superior confusion property of encrypted image. The
histograms of the original 512x512 gray scale Lena
Image and the encrypted Lena Image are shown in
the Figure 4. We can see that the histogram of the
original image is very different from the histogram of
the encrypted image. In addition to that the encrypted
image’s histogram is fairly uniform when compared to
the histogram of original image. Hence the encrypted
image does not reveal any kind of information to attacker
during the transmission of the image.

Original Image Encrypted Image

Fig. 4: Histograms of Original and Encrypted Lena
Images

2) Information Entropy: Information entropy for a
512x512 image of gray scale Lena image was calculated.
The entropy of the encrypted image using the original
algorithm is 7.9930. The entropy obtained for encrypted
image using FIELA is 7.9934 which is close to theoreti-
cal value 8. This means that encryption process is secure
against the entropy attack.

3) Correlation: Correlation of the adjacent pixels in
the encrypted image is calculated to see how they are
related. A total number of 4096 adjacent pairs of pixels
in three directions: horizontal, vertical, diagonal are
selected randomly. The correlation coefficient of adjacent
pixels for both original image and the encrypted image



using FIELA are listed in the Table I. The correlation
coefficient for the original image is close to 1, so they
are highly correlated. For the encrypted image, adjacent
pixels are highly uncorrelated as their correlation coef-
ficient is close to 0.

TABLE I: Correlation coefficients of two adjacent pixels
in original and encrypted image

Direction Original Encrypted
Image Image

Horizontal 0.9681 0.0219
Vertical 0.9821 0.0230

Diagonal 0.9819 0.0208

4) Key Space Analysis: This test shows us what
happens when the encrypted image is decrypted with
a different key. The below Figure 5 consists of Lena
Image encrypted with key 01234567890123456789 and
the image decrypted using a different key that is
01234567890123456788. We can see that even for a
slight change in the key the decrypted image is totally
different from the original image.

Image Encrypted
with key

01234567890123456789

Image Decrypted
with key

01234567890123456788
Fig. 5: Key Sensitivity

B. Experimental Analysis

The original and FIELA algorithms were tested on
gray scale images of size 100x100, 256x256, 512x512.
Table II contains the timings of the application of Lorenz
attractor and encryption for both original algorithm and
FIELA. The application of Lorenz attractor is same for
both original and FIELA algorithms. Only the encryption
process differs for both of them. We observe that as the
image size increases, the speed up of FIELA over the
original algorithm increases drastically.

The timings of Multi core and GPU implementa-
tions of FIELA algorithm are compared with sequential
FIELA in the further results. Table III contains the ex-
ecution timings on multi-core platform and the speedup
over singe-core.

TABLE II: Single core timings (in seconds)

Image Appln of Encryption
size Lorenz attr Original FIELA

100x100 20.47 9.36 0.43
256x256 136.27 396.81 4.90
512x512 531.56 6686.92 20.56

TABLE III: Multi core timings and Speed Up over single
core

Image Appln of Lorenz Attr Encryption
size Time (in s) Speed Up Time (in s) Speed Up

100x100 17.063 1.19 0.15 2.81
256x256 114.45 1.19 2.54 1.93
512x512 467.25 1.13 13.54 1.51

The results of the GPU implementation of applica-
tion of Lorenz attractor are discussed below. Using the
compiler option –ptxas-options=-v for the GPU code
provided the information about the total number of
registers used per thread as 48. Feeding this value in the
CUDA occupancy calculator [5] gives us the best block
size with maximum thread occupancy. The best block
size for this algorithm is 320 with 42% thread occupancy.
With this block size, the number of active thread blocks
per multi processor are 2. The graph showing the active
warps for the selected block size is given in Fig 6. So,
the total number of threads active per multi processor
are 640. The number of such multi processors in a GPU
are 16. So, the expected speedup is 16x640 = 8960x,
however the speed up achieved for a 512x512 image is
1508x over the sequential FIELA. The timings of GPU
and multi-core versions of algorithm were compared.
Table IV contains the execution timing on GPU and the
speedup over the multi core platform.

Fig. 6: Graph from Occupancy Calculator

In order to improve the thread occupancy we tried to
minimize the number of registers used by each thread.



TABLE IV: GPU timings (in seconds) and Speed Up

Image Appln of Speed Up over
size Lorenz Attr multi core single core

100x100 0.0155 1100.83 1317.4
256x256 0.0917 1248.06 1484.62
512x512 0.3525 1325.54 1507.96

This was done by reusing the previously allocated reg-
isters. Using this optimization, the number of registers
used per thread are decreased to 39. The best block size
for this number of registers is 384. The number of blocks
that are active per multi processor are 2. So, the total
number of threads active per multiprocessor are 786. By
doing this, the thread occupancy increased to 50 percent.
The improved GPU results with block size 384 are in
Table V. The graph which illustrating the speed up of
multi core and GPU over the CPU is shown in the figure
8. In the graph, the results were plotted on a logarithmic
scale.

Fig. 7: Graph from Occupancy Calculator

TABLE V: GPU timings for Optimized code (in s)

Image Appln of Speed Up
size Lorenz Attr over multi core

100x100 0.0138 1236.47
256x256 0.0850 1346.44
512x512 0.3346 1396.45

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel encryption
scheme called FIELA, which is an improved version of
original algorithm proposed in [1] to exploit parallelism
without compromising on security aspects. Statistical
Analysis was performed on image encryptions via serial

Fig. 8: Speed Up Over single core

mode FIELA. We observed that our serial mode algo-
rithm itself outperformed the original serial algorithm
with speed up of 325x for a 512x512 image. This
algorithm can therefore be used in real time image
encryption applications where speed is the key factor.
Experimental results of the parallelized FIELA using
GPUs show speed up over the serial FIELA algorithm
by 1396x for a 512x512 image.

In this work, the parallelization was done using only
one single GPU. This can be done on multiple GPUs
where the computation can be divided across all the
GPUs for the creation of confusion matrix which poten-
tially improves performance. CUDA compute capability
3.0 can be used which increases the thread occupancy to
75% due to the increase in the register file size.

ACKNOWLEDGMENT

We dedicate this work to Bhagawan Sri Sathya Sai
Baba, Founder Chancellor of Sri Sathya Sai Institute
of Higher Learning. This work was partially supported
by a nVIDIA, Pune grant under Professor Partnership
Program and the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number OCI-
1053575.

REFERENCES

[1] Gelli MBSS Kumar & V. Chandrasekharan. A novel image
encryption scheme using lorenz attractor. 4th IEEE Conference
on Industrial Electronics and Applications Xi an, China, 2009.

[2] J.C.Sprott. Chaos and time-series analysis. OXFORD University
Press, 2003.

[3] Sai Charan Koduru and V Chandrasekharan. Integrated
confusion-diffusion mechanisms for chaos based image encryp-
tion. IEEE 8th International Conference on Computer and
Information Technology Workshops., 2008.

[4] Jared Hoberock and Nathan Bell. Thrust: A parallel template
library. 2010.

[5] http://developer.download.nvidia.com/compute/devzone/docs/
html/c/tools/cuda occupancy calculator.xls.


